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Abstract

The present paper reports on modeling, numerical simulation, and experimental investigation of plates subjected to
impulsive loading. The kinematical hypothesis used for the theoretical description of the transient response includes
transverse shear deformations, rotary inertia, and geometrical nonlinear effects. The material modeling accounts for
elastic—plastic behavior, isotropic and kinematical hardening, and strain rate sensitivity. The numerical simulation of
the transient inelastic vibrations is performed using isoparametric finite elements. Both the Chaboche and the Bodner—
Partom viscoplastic constitutive laws are used to trace the evolution of the material characteristics in the framework of
a layered shell model. The theoretical and numerical developments are checked by experimental investigations of thin
steel plates subjected to shock waves. These experiments are performed in a shock tube with various impact periods and
loading histories. The topics addressed in this report include (a) the correlation of experimental and simulated transient
inelastic response using the Chaboche and Bodner—Partom models, (b) the sensitivity of the predicted structural re-
sponse to variations of the material parameters identified on the basis of uniaxial tension tests, (c) the effect of the
transverse shear stress distribution on the local evolution of the material behavior and on the global dynamic response,
(d) the evolution of deflections, stresses, and plastic zones under blast loading conditions. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Theoretical modeling and numerical simulation of the inelastic dynamic response of structural elements
are problems of considerable relevance in the design of engineering structures exposed to severe transient
loadings. In literature several approaches are reported on how to investigate the inelastic dynamic behavior
of structures subjected to impulsive loading experimentally and to simulate the response numerically based
on various constitutive models and structural theories. These papers may be divided into two groups as-
suming either that the dynamic load is such that at a given time a velocity field is instantaneously imparted
to the structure or that the structure is loaded by a pressure pulse of short duration. For full references on
the vast literature in this field we refer to monographs like e.g. (Stronge and Yu, 1993; Jones, 1989). The
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present paper discusses exclusively such works in which theoretical predictions of time history responses
and/or final structural deformations of impulsively loaded structural elements are compared with experi-
mental data.

Experimental investigations of structures subjected to an instantaneously imparted velocity field are
performed by using sheet explosives placed on the structure (see e.g. Florence and Firth, 1965; Florence,
1966; Leech et al., 1968; Wierzbicki and Florence, 1970; Jones and Walters, 1972; Bodner and Symonds,
1979). Pressure pulse loading conditions are usually realized experimentally by shock waves generated by
explosives that detonate at some distance from the structure (see e.g. Idczak et al., 1981; Renard and
Pennetier, 1996; Pennetier, 1998). An alternative experimental technique for impulsive loading consists of
the adaptation of the shock tube principle, well established in experimental supersonic gas dynamics, and
allowing either shock or expansion waves. In Gerard (1956) an impact tube is presented in which an ex-
pansion wave is used to create a pressure pulse when it impinges on a plate specimen. It appears that the
shock tube technique has distinct advantages over test techniques using explosives. One of them is that the
front wave is plane, thus yielding a uniformly distributed pressure pulse on plane structural elements. In
addition, the pressure history can be measured easily by only one pressure transducer integrated in the
specimen mounting ring. This allows for very precise modeling of the transient loading conditions in
comparative numerical simulations. In the contrary shock wave fronts generated by detonations of a
gaseous mixture (as e.g. in Renard and Pennetier, 1996; Pennetier, 1998) are spherical in free space and lead
to a complex time-space evolution of the pressure distribution on plane structural elements. Similarly, front
shock waves of cylindrical charges of plastic explosives used in Idczak et al. (1981) do not yield uniformly
distributed pressure pulses. As a result an accurate modeling of the history of the impulsive loading in each
point of the structure is hardly possible. Such uncertainties of the externally applied forces are also sus-
pected in Witmer et al. (1963) to be one of the reasons for discrepancies between experimentally observed
and numerically simulated permanent central deflections of blast-loaded circular aluminum alloy plates.
Similarly, the plots of numerically determined permanent deflections versus detonation intensity in Idczak
et al. (1981) and Renard and Pennetier (1996) for circular brass and aluminum alloy plates, respectively,
show the right tendency but underpredict the experimental results considerably. The difficulties in modeling
the time-space evolution of the pressure pulse distribution on structures due to detonations are also re-
flected in the comparison of the experimentally and numerically determined transient large amplitude vi-
bration response of blast loaded circular aluminum alloy plates in Pennetier (1998) especially in the short
time interval prior to the arrival of the plastic zone at the plate center.

As pointed out in Gerard (1956) the planarity of the loading conditions in impact tubes can be even
improved if shock waves instead of expansion waves are employed to create a pressure pulse. Shock waves
that are not perfectly plane initially can be made plane by using chambers of sufficient length. In the present
paper, experiments are performed with an impact tube of that type. By rupturing a diaphragm of a high-
pressure chamber a shock wave is created which travels through a low-pressure chamber toward a thin steel
plate under investigation. When the shock wave impinges on the plate the pressure time history and the
specimen response are measured directly by high frequency response pressure transducers and capacitive
displacement sensors, respectively.

Numerical simulation of the inelastic plate response to impulsive loading has been carried out in litera-
ture based on a large variety of assumptions concerning the structural behavior and is, therefore, based on
numerous structural theories and different constitutive equations. As to the structural hypotheses, the
theories adopted range from linear bending theory of plates (e.g. in Wang, 1955), to theories in which only
the membrane forces have been considered important, (like e.g. in Idczak et al., 1980, 1981) where mem-
brane shell theories involving different degrees of geometrical nonlinearity for small, moderately large or
finite deflections, respectively, are employed. In Florence (1966) experiments on simply supported circular
aluminum and steel plates subjected to sheet explosives revealed that due to the deformations becoming
large enough to bring membrane forces into play, plates show considerable increase in strength and the
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permanent central deflection can be predicted only in a narrow range of deformations by a bending theory.
On the other hand, membrane shell theories are adequate only for very large deflections, because the in-
fluence of effects associated with the generation of bending states decreases with increasing deformations of
the shell. In Batra and Dubey (1971), an improvement on the prediction of the plate response to explosive
loading yielding also a very good agreement with the experimental results of Florence (1966) was achieved
by accounting for the continuously varying curvature of the deformed surface, hence considering the
geometrical nonlinearity with the combined effect of bending moments and membrane forces. Geometri-
cally nonlinear Kirchhoff-Love type shell theory was also employed in Witmer et al. (1963) and Leech et al.
(1968) for the simulation of the transient response of plates and shells experimentally investigated under
explosive or blast loading conditions. Recently simulation of experimentally observed center deflections of
plates subjected to blast loading was performed in Renard and Pennetier (1996) and Pennetier (1998) on the
basis of classical von Karman plate theory and in Pennetier (1998) by using a Kirchhoff-Love type shell
theory with nonlinear membrane but linear bending strain-displacement relations. Similar to the structural
models, the analysis of the transient response to explosive or blast loading reported in literature is based on
a large variety of constitutive models for the simulation of the inelastic material behavior ranging from
rigid-perfectly plastic theory to elastic—plastic models including hardening and strain-rate effects. It was
shown in Florence and Firth (1965) and Florence (1966) by experiments on impulsively loaded structural
elements that the rigid-plastic theory is a reasonable first-order approximation for the prediction of per-
manent deflections if the plastic deformation or work is large enough. It was concluded that it is reasonable
to neglect the elastic deformation or strain energy if the ratio of the kinetic energy input to the elastic strain
energy capacity is greater than about 2-3 for beams and about 4 for plates made from aluminum or steel.
By correlating predicted and experimental permanent deflections of strain rate insensitive aluminum and
strain rate sensitive steel plates it was found in Wierzbicki and Florence (1970) that the effects of strain rate
sensitivity are comparable to those of large deflections, and that both are equally responsible for the de-
flections being below those predicted by the bending theory of rigid-perfectly plastic plates. Elastic, strain-
hardening, strain rate sensitive material behavior was employed in Witmer et al. (1963) and Leech et al.
(1968) for the simulation of dynamic inelastic plate and shell response to explosive loads. Various other
variants have been used in the literature, so e.g. rigid, linear strain hardening material with no strain rate
effects in Batra and Dubey (1971), rigid-viscoplastic material with no hardening effects in Idczak et al.
(1980, 1981). Different approaches can be also observed concerning the prediction of yield initiation. In
structural theories based on the Kirchhoff-Love hypothesis the yield condition is typically considered under
plane-stress conditions (e.g. in Witmer et al., 1963; Leech et al., 1968), hence neglecting the effect of
transverse shear stresses. In Renard and Pennetier (1996) the plasticity criterion is only applied to terms
containing membrane tensions, because the effect of bending on yield is considered small.

The present investigation is aimed at simulating the experimental transient large amplitude oscillations
and permanent deflections of steel plates tested in a shock tube, and at predicting local phenomena like the
development of stresses, yield initiation, and the spread of plastic zones. To this end none of the above
mentioned simplifications concerning the structural and material models, respectively, will be employed.
The theoretical and numerical developments are performed by considering elastic—plastic deformations,
hardening, strain rate sensitivity, and the combined effect of bending moments, membrane forces and
transverse shear forces.

The constitutive equations employed in the present study include the model of Chaboche in its classical
form and in an extended version for high strain rates (Chaboche, 1989) as well as the model of Bodner and
Partom (1975). The material parameters for the thin steel plates are determined by uniaxial tension tests
at different strain rates using identification methods developed in Lindholm et al. (1985) and Chan et al.
(1988). For the theoretical modeling a geometrically nonlinear first-order shear deformation (FOSD)
theory of layered shells given in Schmidt and Reddy (1988) and Schmidt and Weichert (1989) is used. The
numerical developments presented in this paper are based on a finite element code that was developed in
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Palmerio et al. (1990), Kreja and Schmidt (1995) and Kreja et al. (1997), extended for transient analysis
by employing the central difference method of time integration in Ktosowski and Schmidt (1993, 1994) and
for the simulation of viscoplastic material behavior in Klosowski et al., 1995a,b, 1996, respectively, and
adopted recently in Woznica (1996, 1997, 1998), Woznica and Ktosowski (1997) and Klosowski (1999).
Here particular emphasis is focused on refined modeling and numerical simulation of the effect of transverse
shear stresses on the predicted inelastic structural response which is particularly important for transient
loading conditions with increasing pulse intensity and decreasing pulse duration (see e.g. Jones, 1989). The
improvement introduced in the present finite element analysis consists in the employment of a refined
modified transverse shear stress distribution (MTSD) for the simulation of the material behavior. Com-
parative analyses using either the average transverse shear stress distribution of classical FOSD analysis or
the refined MTSD show for the latter one better correlation of the experimental and simulated oscillations
as well as large quantitative and even qualitative differences in the prediction of local phenomena like yield
initiation and plastic strain propagation. Another main goal of the present paper is the comparative nu-
merical analysis of the dynamic plate response based on different constitutive equations. In earlier papers
(Ktosowski et al., 1995a,b, 1996; Woznica and Klosowski, 1997) greater differences were observed between
the predicted inelastic responses using the Chaboche and Bodner—Partom models, respectively, which is due
to the fact that material parameters had to be adopted from various sources available in literature. Here,
based on the identification of material parameters for the plates used in the shock tube experiments, a very
good agreement is observed between the numerical simulations based on the Chaboche and the Bodner—
Partom models. A special study is devoted to the sensitivity of the predicted vibration response to varia-
tions of the experimentally determined material parameters for both models.

First results were published in Stoffel et al. (1998), Stoffel and Weichert (1999); and Weichert and Stoffel
(1998). For further results in this context we refer to our papers (Stoffel et al., 1999, 2000; Ktosowski et al.,
in press; Chroscielewski et al., in press), which include, among others, the study of plates from different
materials and the response to repeated loading.

2. Constitutive equations

The shock tube experiments reported in Section 5 of this paper were performed using circular steel plates
of 2 mm thickness. The material is classified as St37 according to German standards. The material pa-
rameters required for the numerical simulation of the inelastic plate response on the basis of the Chaboche
and Bodner—Partom viscoplastic models were determined using steel specimens cut out from the same metal
sheets as the plates. Because of the thinness of these specimens only uniaxial tension tests and no com-
pression tests could be performed.

2.1. Chaboche model

The Chaboche law is considered in two different forms, in the classical form and in an extended version
for high strain rates (Chaboche, 1989). They are given by the following set of equations:

L 3. s —X
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Here ¢, p, s, X, R, ('), (), Jo() denote the Green plastic strain tensor, the invariant of the plastic
strain tensor, the second Piola—Kirchhoff stress tensor, the backstress tensor, the isotropic hardening,
the derivative with respect to time, the deviatoric part of a tensor and the second invariant of a ten-
sor, respectively. The yield limit k& and a, b, ¢, Ry, n, K are material parameters to be determined by ex-
periments.

2.2. Bodner—Partom model

The law of Bodner—Partom belongs to a class of viscoplastic theories, which does not take a yield surface
into account. Therefore each point in the stress space presents a viscoplastic state. The law is expressed by
the following equations (see Bodner and Partom, 1975):

3.8
p_ 3. 8
6[] - szz(s,) ) (6)
2 1/R+D\"n+1
h=—=Dyexp | — = , 7
PP pl () 7
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D—Xijm> (8)
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W, = sér, (10)
X =m0 -2 —x\)i (11)
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Here R(t = 0) = R, denotes the initial isotropic hardening, W, stands for the plastic work, and m;, m», R,
Dy, Dy, n, Ry are material parameters to be identified from tension tests.

3. Shell theory

For the numerical simulation of the transient viscoplastic response a finite element method based on a
geometrically nonlinear FOSD shell theory is used. A short summary of the used kinematics is given below,
derivations of this shell model are presented in Schmidt and Reddy (1988) and Schmidt and Weichert (1989)
in detail.

In the framework of the FOSD theory the tangential and normal displacements in the shell space re-
ferred to the base vectors of the midsurface, v, and v3, are expressed by

Uazg“—l—gll)a; v3=g3, =12, (12)
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0 0 . . 1 . .
where v,, v3 are the tangential and normal displacements and v, the rotations at the midsurface, respec-
tively, while 6 denotes the normal coordinate. Assuming small strains and moderate rotations the general
Green—Lagrange strain tensor in the shell space can be expressed by

0 1 2
Eup = Eqp + Oyp + 9281/% (13)
0 1
€3 = &3+ 68&37 (14)
0
€33 = £33, (15)
with
0 0 100
&xp = Oup + 50,04, (16)
1 1 1 0 0 0 ;1 0 ;1
Eup = %(Uihf + U/i|a> - %(bi%/; + bé%) + %(%bzvz + @/;b;l&), (17)
2 1] ;1 gl 1
Eyp = fi(b“v;]ﬁ + bﬁw\a) + 3b,bj0, Uy, (18)
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ba =10+ 0) + 100, (19)
1 . L 0
€3 = 3V U/1|w 33 = 0. (20)

Here the abbreviations

0 0 0 0 0 0 0
Qﬁﬁ:%(ui‘ﬁ+vﬂ|a> — byps, (/)zx/i:va|[3_bab’v3» (21)

0, = D3, + b0, (22)

have been used, where b,5 and b denote the covariant and mixed components of the curvature tensor, while
()], denotes covariant differentiation with respect to the coordinate 6. Here and in the following the
Einstein summation convention has been adopted with Greek indices ranging from 1 to 2 and Latin indices
ranging from 1 to 3.

For the derivation of the equations of motion the principle of virtual work is used in the form

/ [s70e,(V) — p(F" — AoV ] dv" — / (*s' + D")oV;do/ = 0. (23)
v o
Here s are the components of the second Piola—Kirchhoff stress tensor, V; are the components of the
displacement vector, p denotes the mass density per unit volume of the undeformed body, F’ and 4’ are the
components of the body force and acceleration vector, *s* and D' denote the components of the prescribed
external stress vector and of the damping force vector (per unit area of the undeformed bounding surface
</) and 7 is the volume of the body. For viscous damping the components of the damping force vector are
proportional to the velocity, i.e. they are given by D' = —DU¥; with DV denoting the components of the
damping tensor.

If transient viscoplastic analysis is considered, it is necessary to use a layered shell model which permits
to trace the evolution of the material law separately in each layer. The transformation of the 3D principle of
virtual work (23) into a 2D formulation using Eqgs. (12)—(15) yields
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Here .# and & are the reference surface and the boundary line, v,, ¢, denote the components of the unit
outward normal and tangent vectors of .Z, ¢ denotes the number of layers used in the model and k is the
layer identificator. Furthermore, we have used the following definitions (see Librescu and Schmidt, 1988;
Ktosowski and Schmidt, 1996) for

(a) the nth order stress couples

Z[i Zk+1 B 23 Zk+1 B
L(k) :/ C(k)S(k)O d@, L‘(k) :/ C(k)S(k)Q d@, (25)
Zk Zk
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(d) the nth order damping couples

1 q+n q+n 0 0 0 0
_ Z (+do<ﬁ + dacﬂ) ig, D?k) — _ <+d33 + d33> i3 (29)

q=0
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(e) the nth order couples of the surface loads on the upper and lower surfaces
n h/2 n k)2
o 3 om 3 * 33
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(f) the nth order couples of the prescribed boundary loads
”ﬂ Zkt1 . (3)/5 Zt1 s
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Here ¢ and c¢ are the components of the shifter tensor and its determinant, respectively, *#/ denotes the
prescribed components of the first Piola—Kirchhoff stress tensor while z; and z;,, are the coordinates of the
lower and upper surfaces of the kth layer in direction of 6.
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The principle of virtual work (24) along with the strain—displacement relations (13)-(22) and the con-
stitutive equations of Section 2 represents the theoretical framework for the analysis of the dynamic re-
sponse of viscoplastic structures adopted in this paper.

Additional considerations have been made concerning the distribution of transverse shear stresses
through the thickness obtained from the above FOSD model and its influence on the predicted transient
response via the inelastic constitutive equations. It is well known that the effect of transverse shear forces on
the static response of thin metallic structures is small. It has been shown, however, (e.g. in Jones, 1989) that
transverse shear forces are potentially more important for transient loading conditions, in particular in the
early stages of motion, and that their influence on the inelastic response grows with increasing pulse in-
tensity and decreasing pulse duration. Due to the kinematical hypothesis of the FOSD theory expressed by
Eq. (12) the effects of transverse shear stresses are included in the present analysis. Also in the constitutive
equations the influence of the transverse shear stresses, e.g. on the deviatoric part and the second invariant
of the stress tensor are fully taken into account. However, the distribution of the transverse shear stresses
through the thickness resulting from the FOSD hypothesis equation (12) represents the effect of the
transverse shear forces only in an average sense. As a consequence, in the elastic range the transverse shear
stresses in the upper and lower zones of the plate — which are in fact zero for zero tangential loading — are
predicted too high, while the transverse shear stresses near the midsurface are predicted too low. Conse-
quently, using the transverse shear stress distribution obtained by means of the FOSD theory in the yield
condition predicts yield initiation in the upper and lower zones too early and, vice versa, near the mid-
surface too late. In this context it has been pointed out (e.g. in Jones, 1989), that the effect of shear on yield
during dynamic deformation is often significant. Therefore, in the present paper a more realistic transverse
shear stress distribution through the thickness is proposed which allows to simulate the yield initiation more
precisely than the transverse shear stress distribution obtained from the FOSD theory.

The approach adopted here consists of a redistribution of the average transverse shear stress s> obtained
on the basis of FOSD theory into a parabolic function s**() in such a way that

h/2
/ 53(0)d0 = s> h (33)
—h/2

and the zero shear stress loading conditions at the upper and lower surfaces are satisfied, i.e.

s“3(0:g> =0, s“3(9= —%) =0. (34)

This results in

3 40*
S13(0) :KS)Of, K:§<l _ﬁ> (35)

Fig. 1 shows the 10 layer model used for the numerical simulations with the transverse shear stress
distribution according to Eq. (35). The transverse shear stresses for each layer are calculated at the mid-
surface of the respective layer and assumed constant over the layer thickness.

layer 6 K
a3
2 A R VN
— Th ¢% 2 zioh 0.765
! T 3 55h 1125
e — JL sL? 4 %h 1.365
6  Nlayer1 5 oh 1485

Fig. 1. Modified transverse shear stress distribution.
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Comparative analysis in Section 7 using either the FOSD transverse shear stress distribution or the
above MTSD in the yield condition reveals that the effect on the prediction of the yield initiation is sig-
nificant and that the latter one leads to a better correlation of the experimentally observed and simulated
structural response. From the theoretical point of view it should be remarked that both the FOSD and the
MTSD theory exhibit the well known local equilibrium inconsistency: both do not satisfy the equilibrium of

the individual layers.

4. Finite element approach

Eq. (24) forms the basis for the numerical solution by the finite element method. Representing the
displacement field of an element as
vy = Vg,
where NV denotes the matrix of shape functions, and ¢ is the vector of nodal displacements and rotations,
Eq. (24) yields

(0" + (Cy)" + (M§)" — R)dg = 0.

Here Q and R are the vectors of balanced and external forces, while M and C are the mass and damping
matrices, respectively, which can be found in Palmerio et al. (1990) and Ktosowski and Schmidt (1993,
1996). After an aggregation of all elements, Eq. (37) yields the equations of motion in the form

Mg+ Cqg+ Q =R,
where M, C, Q and R denote the respective global matrices and vectors. In the present paper the central

difference method is used for the time integration of Eq. (38).
Fig. 2 shows the finite element mesh for a quarter of the plate used in the shock tube experiments. A

discretization by 72 nine node isoparametric elements with selective reduced integration was required to

(36)

(37)
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Fig. 2. Finite element mesh of the plate.
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achieve a convergent solution. The outer ring represents the clamped area of the plate. The finite element
modeling of the clamping conditions is performed on the basis of experimental results for elastic plate
vibrations (see Section 7).

5. Experimental setup

For the experimental study of viscoplastic plate vibrations a shock tube is used, see Fig. 3, which consists
of a high-pressure chamber (1) and a low-pressure chamber (3), separated from each other by a hostaphane
diaphragm (2). At the end of the tube a steel plate with thickness 2 mm and diameter 138 mm is clamped
between two ring flanges (4). Because of the clamping, an area of only 108 mm diameter is subjected to
shock waves.

In the experiments gas is filled into the high-pressure chamber (1) until the membrane (2) is ruptured. A
shock wave travels through the low-pressure chamber (3) and impinges on the plate specimen (4) at the end
yielding a high-pressure and high-density pulse. The history of pressure on the plate is measured by pi-
ezoelectric sensors suitable for fast changes of pressure. They are located in front of the plate in a separate
ring flange. To record the vibrations of the plate a capacitor is used, one plate is the circular front plate of
the measurement device and the other one is the plate specimen. Its vibration results in a change of the
voltage applied to the capacitor. A calibration curve relating the measured voltage and the distance between
the capacitor plates has to be determined. The temperature dependence of the capacitors requires the
calibration before each new experiment. In the present study the middle point displacement was recorded.

In order to vary impact period, magnitude, and shape of the pressure evolution, several modifications of
the experimental setup are investigated. Their utility is shown in Section 7 and the method is described in
the following. In order to control the impulse the high-pressure part is filled with different gases: nitrogen
and helium. The lighter the gas, the faster the shock wave and the greater the pressure between shock wave
and the steel plate. Furthermore the lighter the gas, the shorter the shock period, which can also be de-
creased by shortening the high-pressure chamber. The reason for this is as follows: when the membrane
breaks a shock wave moves into the low-pressure chamber, besides an expansion wave is generated trav-
eling first into the high-pressure chamber. It is reflected at its end and reaches finally the steel plate, thus
destroying the high-pressure state due to the shock wave. This effect is accentuated by choosing a light gas
and a short high-pressure chamber.

6. Identification of material parameters

Fig. 4 shows the results of tension tests at seven different strain rates. Applied to the uniaxial tension test
the Chaboche law reads:

a a

o=k+X+Kel", X =-——e (39)
C C
Membrane 2 Plate
T 1 3 H‘ 4
High pressure Low pressure

Fig. 3. Principle of the shock tube.
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Fig. 4. Tension tests.

Since only tension tests could be performed with the thin steel specimens, a separation of isotropic and
kinematic hardening was not possible. Therefore in Eq. (39) pure kinematic hardening is assumed. By
means of the quasi-static tension test the yield limit k, the Young’s modulus E and the hardening pa-
rameters a, ¢ are obtained by curve fitting. The viscous parameters K, n are determined by curve fitting of
the overstress versus strain rate relation. Detailed information concerning the identification procedure can
be found in (Lemaitre et al., 1994). In this way the following parameters are found:

E=198.6x10° MPa, a=2.5x10° MPa, c¢=20.3, k=167.88 MPa, K = 63.12 MPa,
n=4.22.

The purpose of the extended form of the Chaboche model is to account for the saturation process of
the overstress at high strain rates. The method of parameter identification, suggested in Lemaitre and
Chaboche (1994) for the classical version of the Chaboche model, is extended here for this refined model.
An equivalent viscous exponent N, which controls the saturation process as a function of the overstress, is
defined as (see Chaboche, 1989):

_dlnp B G,y \ !
V=4 =f(@) =n+an+1)(Z) . (40)

To identify the material parameter o, first a relation between the viscous exponent N and the overstress
o, must be obtained. This is carried out by curve fitting of the overstress—strain rate relation in five different
ranges of the strain rate, see Fig. 5. Starting with a set of three measured points (set 1) in each subsequent
set one additional measured point is included. The obtained relation is shown in Table 1.

By describing this new relation with Eq. (40), the parameter o can be determined (see Fig. 6). However,
from Eq. (40) it can be seen that only the viscous parameter N is a function of the strain rate, while the
second viscous parameter K remains constant for numerical simulations using this model. Since K depends
on the strain rates as shown in Table 1, any choice of a particular value restricts the accuracy of the
simulation to a special interval of strain rates. The disadvantage of this procedure is shown in Fig. 7, where
K is chosen for high strain rates. As a result the calculation of the viscous behavior predicted by using the
data set 1 is no more in agreement with the measurement even at low strain rates. Likewise, if K is chosen
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Fig. 5. Curve fittings at different strain rates.

Table 1
Identification of material parameters (extended Chaboche model)
Set & (1/s) Overstress (N/mm?) K (N/mm?) N
1 9.76 x 1074 12.42 703.14 1.72
2 242 %1072 26.06 67.71 391
3 4.83 x 1072 33.33 74.44 3.68
4 7.52 x 1072 34.54 69.40 3.87
5 1.45 x 107! 38.18 63.12 422
6
5 4

-

¢ Tension test
1 - —— curve fitting

Viscous exponent N
w
l

0 10 20 30 40
Overstress (N/mm?)

Fig. 6. Relation between viscous exponent N and overstress, describing a saturation of the overstress.
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Fig. 7. Effect of the choice of a particular value for the viscous parameter K.

out of a range of low strain rates the accuracy of the calculated high strain rate response would be in-
sufficient.

As a result of the missing separation of elastic, plastic and viscous part in the Bodner—Partom model, the
identification of the material parameters my, my, Ry, Dy, Dy, i, Ry is complicated. The analytical method
applied in the present study was developed in Lindholm et al. (1985) and Chan et al. (1988). Like in the
identification on the basis of the Chaboche model only one type of hardening is assumed. Because of

the assumed initial isotropic hardening R, here the entire hardening is treated as isotropic. In this way
the following parameters are obtained:

1
Ry =431.86 MPa, R, =665.94 MPa, m; =0.1214 (MPa.)fl7 Dy = 1000 3 "= 1.63.

7. Experimental and numerical results
7.1. Modeling of boundary conditions and damping

For the simulation, the correct modeling of the boundary conditions is essential. In Section 5 a
‘clamping’ device was described, however it is not possible to realize ideal clamping. To model the real
stiffness of the clamping device, first elastic vibrations are carried out, knowing that the frequency of the
vibrations depends on the boundary stiffness. By comparing the experimentally determined frequency of the
plate vibrations with FE-simulations it was found that the real clamping conditions can be modeled by an
outer ring with Young’s modulus 255000 N/mm? (see also Fig. 2).

In order to include an appropriate description of the damping of the vibration it is taken into account
that the increasing air density inside the tube causes a greater damping than the air outside. The density
between the reflected shock wave and the plate is calculated, based on gas dynamics considerations which
can be found in Fieweger (1996). With the obtained density inside and the normal air density outside
the tube a ratio between the two damping properties is determined. Then, by adapting the slope of the
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Fig. 8. Comparison between measured and simulated viscoplastic vibrations (Chaboche model).

amplitudes of simulated elastic vibrations to measured ones, the internal and external damping coefficients
are determined. Evidently the internal damping is not constant due to the movement of the shock wave in
the tube. Nevertheless, the applied method is estimated appropriate to account for an average damping
coefficient. For each experiment labels for the internal and external damping coefficients used for numerical
simulation are given at the top of the respective diagram.

7.2. Correlation of experimental and predicted vibrations

In Fig. 8, viscoplastic vibrations are presented. It can be seen that the simulations with the classical
Chaboche model fit most correctly to the measured vibrations. For the calculations with the extended form
of the Chaboche model two possibilities are shown, for low and high strain rates, depending on the value of
the viscous parameter K as described in Section 2. The result is that none of them improves the simulation
because they involve a restriction to a special interval of strain rates as shown in Section 2, but in a vibrating
state of deformation the entire range of strain rates is of the same importance. The simulations using the
Bodner—Partom model show very similar vibrations compared to those obtained on the basis of the classical
Chaboche model and predict the plate response also well. A greater difference between vibrations calculated
by the Chaboche and the Bodner—Partom models was observed in Klosowski et al. (1995a,b), but there no
comparison to an experiment was available to decide which simulation is the better one. In the present paper
it is shown that not only both simulations are in good agreement with the experiment, but also the simu-
lations by using the models of Chaboche and Bodner—Partom are very similar to each other.

7.3. Geometrical nonlinearity

Fig. 9 shows numerical results for the rate of the plastic strain tensor invariant versus time at the
boundary in some of the ten layers used for through-the-thickness discretization of the plate (see Fig. 1). It
can be observed that in the lower layer, 1, yield initiation occurs earlier than in the upper layer, 10. Also, it
can be seen that the plastic strain rates in the lower layer are much higher than in the upper one. The same
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Fig. 9. Rate of the plastic strain tensor invariant versus time at the boundary.

effects, however even more pronounced, can be observed when the layers 3 and 8 are considered, which are
located symmetrically to each other in the middle of the lower and upper half, respectively, of the cross
section. Plastification in layer 3 starts earlier and is much more intensive than in layer 8, where the plastic
strain rates remain very small during the entire impulse duration. These observations show that before yield
initiation the plate had reached already a geometrically nonlinear state of deformation in which in addition
to the bending moments tensile forces due to large displacements had developed resulting in an asymmetric
through-the-thickness distribution of the longitudinal stresses and, subsequently, in a shift of the neutral
axis. This result clearly demonstrates that the plate response and in particular phenomena like yield ini-
tiation and spread of plastic zones can be accurately predicted only by a geometrically nonlinear theory
incorporating both bending and membrane effects. Fig. 10 shows the same effects as Fig. 9, however at the
center of the plate. As expected, here the situation is reversed, i.e. in the upper layers, 10 and 9, yield
initiation occurs earlier and is accompanied by higher strain rates than in the lower layers, 1 and 2, re-
spectively. This is due to the fact that already in the elastic range the tensile stresses due to bending in the
upper layers are increased while the compressive stresses in the lower layers are decreased by tensile forces
in the plate due to large deflections. In the analyzed case this geometrically nonlinear effect causes plas-
tification only in layers 1 and 2 of the lower half but in all layers of the upper half of the cross section.

7.4. Modified transverse shear stress distribution

Experimental results were compared to the simulation using the Chaboche model with and without the
MTSD described in Section 3 (see Fig. 1), respectively. The simulation turns out to be sensitive to this
modification and a better approximation of the experimental results is reached at the lower peaks of the
amplitudes. The same holds if the Bodner-Partom model is used.

Fig. 11 shows the effect of the refined transverse shear stress distribution on the prediction of yield
initiation through the thickness at the plate boundary. From the plots of the rate of the plastic strain tensor
versus time it can be seen that a MTSD based analysis predicts later yield initiation and much smaller
plastic strain rates in both the upper and lower layers, 10 and 1, than an analysis based on the transverse
shear stress distribution resulting from the FOSD hypothesis. This is due to the fact that in a MTSD based
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Fig. 11. Rate of the plastic strain tensor invariant versus time at the boundary predicted by FOSD and MTSD analysis.

analysis the transverse shear stresses at the upper and lower surface are zero, hence matching the physical
reality, while pure FOSD analysis overestimates these stresses and, subsequently, yield initiation and plastic
strain rates in the outer layers. At the midsurface of the plate the situation is reversed, because there the
transverse shear stresses of the MTSD model are 50% higher than those of the FOSD theory. The effect is
demonstrated in Fig. 12 by the plot corresponding to layer 5 located close to the plate midsurface. While no
yield initiation is predicted in this layer by using pure FOSD theory, a MTSD based analysis reveals that
plastification indeed occurs.
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7.5. Sensitivity of the simulation

Next the sensitivity of the simulated vibrations to variations of the experimentally determined mate-
rial parameters is studied. In Fig. 13 the experimental results are plotted in comparison to the simulation
using the Chaboche model, including the transverse shear stress modification, and another simulation with
slightly varying material parameters. The variations of the parameters were generated by omitting in the
identification procedure the two uniaxial tension tests at the highest strain rates (see Fig. 4). Using this
reduced set of experimental data a new identification of the viscous parameters was carried out in order to

Steel 2mm, outside D=400Ns/m®, inside D=2080Ns/m®

0.0020 20
£ 0.0015 - : N 15
c 3 S '~
5 i / VoYX @
2 ! x=3
= i \
S 0.0010 4 |-} 10 2
E [ ': 2
s ‘
o |k ] —— Vibration (exp.) ,;‘_J
(0] o
=R b A ¢ A R Vibration (sim.) Cha./MTSD/
2 0.0005 7y~ : n=4.22/K=63.12N/mm” Mo
| ——~ Vibration (sim.), Cha./MTSD/
f n=3.68/K=74.44N/mm?
/ —— Pressure (exp.)
0.0000 T T . : . . + 0
0.004 0.005 0.006 0.007 0.008 0.009 0.010

Time (s)

Fig. 13. Sensitivity of the plate response to variations of the material parameters of the Chaboche model.
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Fig. 14. Material parameter variation for the Chaboche model.

obtain a realistic variation of the material properties. A strong dependence of the lower amplitudes on the
viscous parameters is visible in Fig. 13. In order to study the problem of sensitivity more systematically each
parameter is varied and new simulations are carried out, taking the change of the first lower amplitude as
sensitivity indicator. The results of this procedure are shown in Fig. 14. One sees a strong dependence of the
first lower amplitude on the viscous parameters, whereas the result is not sensitive to variations of the
hardening parameters. In Figs. 15 and 16 the same study is carried out using the Bodner-Partom model.
Again in the identification procedure the two uniaxial tension tests at the highest strain rates were omitted.
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Fig. 15. Sensitivity of the plate response to variation of the material parameters of the Bodner-Partom model.
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With the new obtained viscous parameters n, R, a second simulation is carried out which is also shown in
Fig. 15. However, here the change of the material parameters is so small that the two simulations of the
plate response are identical. One can see that the identification of the material parameters in the framework
of the Bodner-Partom model is much less affected by unavoidable error margins of experimental mea-
surements. Consequently, the numerical simulations of the plate response based on the Bodner-Partom
model show considerable less sensitivity to deviations of experimental results in the tension tests than those
based on the Chaboche model. The variation of each parameter separately is shown in Fig. 16. Here, a
much higher change of the first lower amplitude is observed by varying the viscous parameters by the same
percentage as in the Chaboche model. We note that this high sensitivity to material parameter variations
does not necessarily cause a high inaccuracy of structural simulations using the Bodner—Partom model. One
should keep in mind that variations of the material parameters in the identification procedure are much
smaller for the Bodner—Partom model than for the Chaboche model. Thus the fact that Fig. 16 shows a
high change of the system response caused by relatively small change of parameters is in agreement with the
observation that, vice versa, relatively large error margins in the tension tests cause only small changes of
the material parameters in the identification process. Therefore the accuracy of a viscoplastic model cannot
be estimated exclusively by the sensitivity to material parameter variation. It is as important to take into
account the variation of parameters induced by error margins in tension tests. Only the superposition of
both effects can lead to an objective statement about the accuracy of the used model. In this sense the
Bodner—Partom model has been shown to be more stable than the Chaboche model (see Figs. 13 and 15) for
the studied problem.

7.6. Various time histories

Measured and simulated vibrations at higher pressures and larger displacements were considered. In Fig.
17, the maximum rotations in the plate versus time are plotted for a pressure history with the highest peak
pressure used in the experiments. It can be seen that the observed plate deformations do not violate the used
shell theory concerning the assumption of moderate rotations.

To check if the good correlation between experiment and simulation are not accidental the pressure
impulses were changed by modifying the shock tube as described in Section 5. So, instead of nitrogen and a
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Fig. 18. Experiment using helium and a long high-pressure chamber.

long high-pressure chamber used in Figs. 8, 13 and 15, in the experiments presented in Fig. 17 helium with a
short high-pressure chamber and in Fig. 18 helium with a long high-pressure chamber are used. It can be
observed that also in these experiments with very different impact periods, magnitudes, and shapes of the
pressure evolution a good correlation of measured and simulated plate response is achieved.

8. Conclusions

In the present paper the transient large amplitude oscillations of steel plates subjected to shock waves
was studied experimentally and numerically. Calculations were carried out by nonlinear finite element
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analysis based on a layered model including the effects of transverse shear and rotary inertia. Parameter
identifications by means of uniaxial tension tests were performed for the Chaboche and Bodner—Partom
viscoplastic constitutive laws. Based on these identifications a good correlation of the predicted and ex-
perimental inelastic dynamic response and permanent deflections was achieved with both models. An
analysis of the sensitivity of the predicted response to variations of the material parameters revealed that
the simulations based on the Bodner—Partom model show considerable less sensitivity to deviations of the
experimental results in uniaxial tension tests, because the result of the identification is much less affected
than in the case of the Chaboche model. Comparative analysis using a refined transverse shear stress dis-
tribution to trace the evolution of the material behavior showed a significant effect on the prediction of yield
initiation and plastic strain propagation and led to a better correlation of the experimental and simulated
transient responses.
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